@ Software Engineering Technology

COCOMO Suite Methodology and Evolution

Dr. Barry Boehm, Ricardo Valerdi, Jo Ann Lane, and A. Winsor Brown

University of Southern California

Ouwer the years, software managers and software engineers have used varions cost models such as the Constructive Cost Model
(COCOMO) to support their software cost and estimation processes. These models have also helped them to reason abont the
cost and schedule implications of their development decisions, investment decisions, client negotiations and requested changes,
risk management decisions, and process improvement decisions. Since that time, COCOMO has cultivated a user communi-
ty that has contributed to its development and calibration. COCOMO bhas also evolved to meet user needs as the scope and
complexity of software system development bas grown. This eventually led to the current version of the model: COCOMO
11.2000.3. The growing need for the model to estimate different aspects of software development served as a catalyst for the
creation of derivative models and extensions that conld better address commercial off-the-shelf software integration, system
engineering, and system-of-systems architecting and engineering. This article presents an overview of the models in the COCO-
MO suite that includes extensions and independent models, and describes the underlying methodologies and the logic bebind
the models and how they can be used together to support larger software system estimation needs. It concludes with a discus-
sion of the latest University of Southern California Center for Software Engineering effort to unify these varions models into

a single, comprebensive, user-friendly tool.

In the late 1970s and the early 1980s as
software engineering was starting to
take shape, software managers found they
needed a way to estimate the cost of soft-
ware development and to explore options
with respect to software project organiza-
tion, characteristics, and cost/schedule.
Along with a number of commercial and
proprietary cost/schedule estimation
models, one of the answers to this need
was the open-internal Constructive Cost
Model (COCOMO). This and other mod-
els allowed users to reason about the cost
and schedule implications of their devel-
opment decisions, investment decisions,

established project budget and schedules,

client negotiations and requested changes,
cost/schedule/petformance/ functionality
tradeoffs, risk management decisions, and
process improvement decisions [1].

By the mid-1990s, software engineering
practices had changed sufficiently to moti-
vate a new version called COCOMO 11,
plus a number of complementary models
addressing special needs of the software
estimation community. Figure 1 shows the
variety of cost models that have been
developed at the University of Southern
California (USC) Center for Software
Engineering (CSE) to support the planning
and estimating of software-intensive sys-
tems as the technologies and approaches

Figure 1: Historical Overview of COCOMO Suite of Models

20 CrossTALK The Journal of Defense Software Engincering

have evolved since the development of the
original COCOMO in 1981.

Figure 1 also shows the evolution of
the COCOMO suite categorized by soft-
ware models, software extensions, and
independent models. The more mature
models have been calibrated with histori-
cal project data as well as expert data via
Delphi surveys. The newer models have
only been calibrated by expert data.

Table 1 includes the status of the 12
models in the COCOMO suite. All of
these models have been developed using
the following seven-step methodology [2]:
(1) analyze existing literature, (2) perform
behavior analysis, (3) determine form of
model and identify relative significance of
parameters, (4) perform expert-judg-
ment/Delphi assessment, (5) gather proj-
ect data, (0) determine Bayesian A-
Posteriori update, and (7) gather more
data, refine model.

The checkmarks in Table 1 indicate the
completion of that step for each model.
Step 4 of the methodology can often
involve multiple rounds of the Delphi sut-
vey that provide model developers some
insight into the effects of the model
parameters on development effort. The
Delphi surveys attempt to capture what
the experts believe has an influence on
development effort.

Step 5 of the methodology involves
collecting historical project data to vali-
date the cost-estimating relationships in
the model. This process depends on the
support of the CSE affiliates to provide
data that is relevant to the model being
calibrated. The COCOMO model has

more data than the other models com-

April 2005

bined mostly because it has been around
the longest, and it has been shown to be
robust as well as accurate.

Step 6 involves combining the project
data with the expert judgment captured in
the Delphi survey to produce a calibrated
model. This is done using Bayesian statis-
tical techniques that provide the ability to
balance expert data and historical data [2].

Model priorities, definitions, Delphi,
and calibration data are collaboratively
provided by the practical needs and expe-
riences of USC CSE’ supporting affili-
ates. These have included the major aero-
space, computing, and telecommunica-
tions companies along with many of the
major software and manufacturing com-
panies, non-profits, professional societies,
government organizations, and commet-
cial cost model proprietors. For the list of
CSE affiliates, visit <http://sunset.usc.
edu/cse/pub/affiliate/general.html>.

The first three models (COCOMO 11,
COINCOMO, and DBA COCOMO) are
fundamentally the same model but tai-
lored for different development situations.
In addition, commercial versions of
COCOMO such as Costar <www.soft
starsystems.com> and Cost Xpert
<www.costxpert.com> provide further
estimation-related capabilities. COQUAL-
MO is used to estimate the number of
residual defects in a software product and
to provide insights into payoffs for quality
investments. iDAVE estimates and tracks
software dependability return on invest-
ment. COPLIMO supports software
product line cost estimation and return on
investment analysis. COPSEMO provides
a phased distribution of effort to support
incremental rapid application develop-
ment and is typically used with CORAD-
MO. COPROMO predicts the most cost
effective allocation of investment
resources in new technologies intended to
improve productivity. All of the models
described thus far are derivatives of the
COCOMO model because they somehow
depend on the output of COCOMO and
modify it for certain situations.

The final three models are independ-
ent extensions of COCOMO that require
their own inputs and can be used in con-
junction with COCOMO, if desired.
COCOTS estimates the effort associated
with the integration of commercial off-
the shelf (COTS) software products.
COSYSMO estimates the systems engi-
neering effort required over the entire sys-
tem life cycle. COSOSIMO estimates the
lead system integrator (LSI) effort associ-
ated with the definition and integration of
software intensive system-of-systems
(SoS) components.

April 2005

Model Description

Literature

COCOMO Suite Methodology and Evolution

Significant Data
Parameters

Behavior Delphi

Constructive Cost
Model
Constructive
Incremental COCOMO | ¥
DataBase (Access)
Doing Business As
COCOMO I

cocomolli

COINCOMO

DBA COCOMO

>200

Constructive Quality v

COQUALMO Model

Information
Dependability Attribute | v
Value Estimation

iDAVE

Constructive Product v

COPLIMO Line Investment Model

Constructive Phased
Schedule and Effort v
Model

COPSEMO

Constructive Rapid
Application v
Development Model

CORADMO

Constructive
Productivity- v
Improvement Model

COPROMO

Constructive
Commercial Off-the- v
Shelf Cost Model

COCOTS

Constructive Systems
Engineering Cost 4
Model

COSYSMO

Constructive System-
of-Systems Integration | v/
Cost Model*

COsOoSsIMO

* Literature, behavior, and variable analysis limited due to number of available SoS to evaluate.

Table 1: Status of the Models

For more information on the COCO-
MO suite of models, visit: <http://
sunset.usc.edu>.

Underlying Methodologies
and Logic

The key to understanding the model out-
puts and how to use multiple models
together is by comprehending the underly-
ing methodologies and logic. In the devel-
opment of a software-related cost model,
the general COCOMO form is:

PM = A x (X Size)™ x II(EM)
where,

PM = person months.

A = calibration factor.

Size = measure(s) of functional size of a
software module that has an additive
effect on software development effort.

B = scale factor(s) that has an exponential
or nonlinear effect on software devel-
opment effort.

EM = effort multipliers that influence
software development effort.

Each factor in the equation can be rep-
resented by a single value or multiple val-
ues, depending on the purpose of the fac-
tor. For example, the size factor can be
used to characterize the functional size of

a software module via either software lines

of code or function points, but not both.

Alternatively, the project characteristics

can be characterized by a set of effort

multipliers, EM, that desctibe the develop-
ment environment. These could include
software complexity and software reuse.

COCOMO 1I has one additive, five expo-

nential, and 17 multiplicative factors.

Other models have a different number of

factors that depend on the scope of the

effort being estimated by that model. The
number of factors in each of the models
is shown in Table 2 (see next page).

The general rationale for whether a
factor is additive, exponential, or multi-
plicative comes from the following criteria:
1. A factor that has effect on only one

part of the system — such as software
size — has a local effect on the system.
For example, adding another source
instruction, function point entity,
module, interface, operational sce-
nario, or algorithm to a system has
mostly local additive effects on project
effort.

2. A factor is multiplicative or exponen-
tial if it has a global effect across the
overall system. For example, adding
another level of service requirement,
development site, or incompatible cus-
tomer has mostly global multiplicative
or exponential effects. If the size of

www.stsc.hillaf.mil 21

Software Engineering Technology

Table 2: Model Factor Types

Number of | Number of Number of
Model Name | Scope of Estimate Additive Exponential | Multiplicative
Factors Factors Factors
COCOMO Software development effort and schedule | 1 1 15
COCOMO Il Software development effort and schedule | 1 5 17
COSYSMO Systems engineering effort 4 1 14
COCOTS COTS assessment, tailoring, and 3 1 13
integration effort
COSOSIMO SoS architecture and integration effort 4 6 ---

the product is doubled and the pro-
portional effect of that factor is also
doubled, then it is a multiplicative fac-
tor. If the effect of the factor is more
influential or less influential for larger
projects because of the amount of
rework due to architecture and risk
resolution, team compatibility, or
readiness for SoS integration, then it is
treated as an exponential factor.

These rules have been applied to the
development of the COCOMO model as
well as the associated models that have
been developed at the CSE. The assump-
tions made about the cost estimating rela-
tionships in these models require that they
be not only developed but also validated
by historical projects. A crucial part of
developing these models is finding repre-
sentative data that can be used to calibrate
the size, multiplier, and exponential fac-
tors contained in the models. The COCO-
MO form is a hypothesis that is tested by
the data. For example, COCOTS data
analysis showed that the COCOMO form
applied to COTS integration, but that
other forms were needed for COTS
assessment and tailoring,

Table 2 summarizes the factors for the
vatious COCOMO-independent models.
The decision to have a different number
of factors is determined by the Delphi
process and confirmed by the data analy-
sis, either of which can add or subtract
factors from a model. However, the same
criteria for factor type are used in all of
the models. The COCOMO II extensions
(shown in Figure 1) are based on the initial
COCOMO 1II estimates with additional
factors incorporated for the software
characteristic of interest.

Understanding the scope of each
model is also a key element in understand-
ing the output it provides. The models in
the COCOMO suite provide a specialized
set of estimates that address specific
aspects of development effort for soft-
ware-intensive systems. COCOMO users
are now beginning to use multiple models
in parallel to develop cost estimates that
cover a broader scope that exceeds the
boundaries of traditional software devel-
opment. In this case, the models in the
COCOMO suite provide a set of tools

22 CrossTALK The Journal of Defense Software Engincering

that enable more comprehensive cost esti-
mates. However, there are some limita-
tions that exist when using multiple mod-
els together. These limitations are dis-
cussed in the next section.

Using Current Models
Together

Many benefits exist when using multiple
models in parallel. For one, they provide a
more comprehensive set of estimates that
better reflect the true effort associated
with developing a software system. The
effort that is not accounted for in COCO-

MO may be covered by other models such

as COCOTS, COSYSMO, and COSOSI-

MO. Secondly, they enable the estimator

to characterize the system in terms of

multiple views.

However, some complications can
arise when any two of these models are
used in parallel since each of the models
was initially developed as an independent
entity. Just as the process model commu-
nity has found that software engineering,
software development, system engineet-
ing, and other activities are integrated,
have dependencies, and cannot be ade-
quately performed and optimized inde-
pendently of each other, the estimation
community has also found that these
activities cannot be estimated independ-
ently for many of the larger software-
intensive systems and SoS. Activities need
to be planned and estimated at a program
or project level.

Feedback from USC CSE affiliates and
other COCOMO model users [3, 4] indi-
cates that users would like a single tool in
which they can do the following:

* Identify system and software compo-
nents comprising the software system
of interest.

* Easily evaluate various development
approaches and alternatives and their
impacts to cost and schedule.

* Understand the ovetlaps between
models, if any.

Moving Forward - COCOMO

Suite Unification
Efforts have been initiated at the USC CSE
to develop a framework in which the key

cost models can be integrated to provide a
comprehensive software-system develop-
ment effort to users. Once the models that
are most likely to be used together are inte-
grated, efforts will focus on the integration
of other more specialized models. We will
also begin with the models that have a high
degree of maturity.

The purpose of this unification effort
is similar to that of the individual cost
models [2], that is, to help software-inten-
sive system and SoS developers and their
customers reason about the cost and
schedule implications of their develop-
ment decisions, investment decisions, risk
management decisions, and process
improvement decisions.

Key to our approach is distinguishing
between an integrated set of models versus
a truly unified model. When a set of mod-
els is integrated, typically each model
becomes an entity in the integrated set
with inputs into one model creating out-
puts that are then fed into subsequent
models. However, when a unified model is
developed, there is a reengineering of the
set of models to come up with an archi-
tecture where the whole of the unified set
is greater than the sum of the parts.
Developing a unified COCOMO suite
model will support the goals to minimize
or eliminate overlap between the models,
provide a relatively comprehensive cover-
age of the SoS, system engineering, and
software development activities, and
develop a relatively simple interface for
specifying inputs as well as a well-integrat-
ed set of outputs.

Key Unification Issues

In August 2004, the CSE held an internal
workshop to identify key issues for model
unification. The outcome of the work-
shop was the identification of four areas
of focus for unification: (1) selection of
models that must be unified to support
various types of development, (2) identifi-
cation of the overlap between these mod-
els, (3) identification of missing activities
not covered by any of the current models,
and (4) specification of the required
parameters and outputs for the related
models in a user-friendly, consistent, and
usable manner. The following sections
describe some of the more detailed issues
identified as part of the four focus areas.

Model Selection

Many of today’s large software-intensive
systems integrate legacy capabilities,
COTS software products, and new custom
software subsystems. No single COCO-
MO model covers the full life-cycle effort
for the development of these types of sys-

April 2005

tems. The new software development
effort is easily estimated using COCOMO
II. COTS customization effort might be
estimated using another COCOMO suite
model: COCOTS. COSYSMO would typ-
ically be used to estimate the system-level
engineering activities such as feasibility
analysis to support the integration con-
cept, functional analysis of the new
requirements, trade-off studies, prototyp-
ing, performance evaluation, synthesis, and
system vetification and validation activi-
ties. And finally, COSOSIMO might be
used to estimate the effort associated with
the integration of the legacy system with
the COTS system and the new custom
software system. CSE corporate affiliates
have identified potential combinations of
cost models that would be of wvalue to
them, including COCOMO/COSYS-
MO/COCOTS and COCOMO/COSYS-
MO/COSOSIMO [4].

Model Overlap
Further analysis is required to determine
the extent of any ovetlap between the var-
ious COCOMO models. Potential overlap
issues were identified with respect to vari-
ous combinations of the primary cost
models as well as with respect to the gen-
eral integration of software and system
components.

e COCOMO II and COSYSMO
Model Overlap: Currently, COCO-
MO II is designed to estimate the soft-
ware effort associated with the analysis
of software requirements and the
design, implementation, and test of
software. COSYSMO estimates the
system engineering effort associated
with the development of the software
system concept, overall software sys-
tem design, implementation, and test.
Key to understanding the overlap is
deciding which activities are consid-
ered systemr engineering and which are
considered software engineering/ develop-
ment, and how each estimation model
handles these activities.

e COSYSMO and COSOSIMO Mod-
el Overlap: COSOSIMO aims to esti-
mate the effort associated with the
architecture definition of a SoS as well
as the effort associated with the inte-
gration of the highest level SoS com-
ponents. On the other hand, COSYS-
MO estimates are done in the context
of a single system and include the
effort needed to define a single, sys-
tem-level atrchitecture, the design of
the system components, and the inte-
gration of those components.
COSYSMO also includes the effort

requited for the system development

April 2005

to support the integration of the sys-
tem component in the target environ-
ment. Further work is required to
understand the subtleties of these
models and exact extent of any over-
lap between these models.

Missing Activities

Are there any key activities missing when
the key models are viewed together? How
are specialty engineering tasks for secure
or sensitive systems handled? How are
non-software system development tasks
handled? What about logistics planning
for operational support? Can effort from
activities not supported by any current
COCOMO model be easily integrated?

Effort Outputs

What granularity should be provided?
One effort value? An effort value for each
of the key models? By software compo-
nent? By system component? By engineer-
ing category (e.g, software, systems engi-
neering, LSI)? By phase/stage of develop-
ment?

Understanding Unification

Issues

To begin to understand these four unifica-

tion issues better and to start developing a

candidate approach for the unified

COCOMO model, efforts were initiated

to better understand the following:

¢ Current model boundaties.

* How the current models atre typically
used today.

¢ The activities associated with software
development, system engineering, and
SoS integration work performed by
LSIs.

e What activities are included in each of
the current primary cost models.

Current Model Boundaries and
Usage

To address this first aspect, we developed
a table to indicate when each model (or set
of models) is typically used (Table 3). As
part of this effort, we developed descrip-
tions that tried to capture information
about the cutrrent boundaries of each
model and how those boundaries expand
as the current models are used in an inte-
grated manner.

Types of Effort Currently Estimated

The next step was to identify a compre-
hensive set of high level, software-inten-
sive system life-cycle activities, the typical
development organizations responsible
for the performance of these activities,
and the scope of the activity typically pet-

COCOMO Suite Methodology and Evolution

formed by each development organiza-
tion. Then each activity covered by each of
the primary cost models was identified.
For example, the system engineering
organization is typically responsible for
the system/subsystem requitements and
design, and the software development
organization participates in a support or
review tole. Other activities, such as man-
agement, are often performed at various
levels with each development organization
having ptrimary responsibility at their
respective levels.

The results of this effort are shown in
Table 4 (see next page). The shaded activ-
ities under Software Development are cur-
rently covered in COCOMO II and
COCOTS. The shaded activities under
System Engineering are currently estimat-
ed by COSYSMO. The shaded activities
under LSI are currently estimated by
COSOSIMO. The activities that are not
shaded are currently not covered by any of
the models in the COCOMO suite. And,
since the focus of the COCOMO suite is
on software-intensive systems, none of
the items under the hardware develop-
ment column are currently covered.

Some activities such as management
and support, involve several organizations

Table 3: How Current Primary Cost Models
Are Typically Used

Use ... When scope of work to be

performed is ...

Development of software
components (software
development).
Assessment, tailoring, and
integration of COTS
products.

Design, specification, and
integration (system
engineering) of system
components to be
separately developed for a
single system.
Specification, procurement,
and integration of two or
more separately system-
engineered and developed
systems.

Development of software
components (software
development), and a
software system, including
assessment, tailoring and
glue-code for integration of
COTS.

System engineering and
software development for a
single system with software-
intensive components.
System engineering of
individual systems and
integration of the multiple
systems.

System engineering,
software development, and
integration of multiple
software-intensive systems
and COTS products.

CocomMmO I

COCOTS

COSYSMO

COSOSIMO

cocomolll
with COCOTS

COSYSMO and
COCOMO I

COSYSMO and
CososIMO

cocomMmo i,
COSYSMO,
COCOTS, and
CososIMO

www.stsc.hillaf.mil 23

Software Engineering Technology

Responsibilities

Software

Activity Development Hardware Exzti:l?ering LSI
(COCOMO Il and Development (COSOSIMO)
COCOTS) (COSYSMO)
Primary for Primary for Primary for Primary for SoS
Management Software Level Hardware Level System Level Level

Support Activities (e.g.,

Configuration Management and Software Level Hardware Level System Level 121 (I FEmEN

Level
Quality Assurance) eve
SoS Definition SoS Component SoS Level
Source Selection and SoS Lead

Component Procurement

Subsystem Requirements Review Review Elaboration* Lead | Inception Lead
System/Subsystem Design Support Support Lead Review
Hardware/Firmware Development Lead

Software Requirements Analysis Elaboration* Lead Inception Lead

Software Product Design Lead Review

Software Implementation/ Lead Support

Programming

Software Test Planning Lead Review/Support

Sof.twa.re Verification and Lead Review/

Validation Support

System Integration/Test Support Support Lead Review
System Acceptance Test Support Support Lead Review
SoS Integration/Test Support Support Review/Support Lead
SoS Acceptance Test Support Support Review/Support Lead

Manuals (User, Operator,

Maintenance) SoS Level Lead

SoS Level Lead

Software Lead Hardware Lead System Lead

Transition (Deploy and Maintain)

Support Support

System Lead

* Model Based (System) Architecting and Software Engineering/Rational Unified Process phase of development.

Table 4: Life Cycle Activities

efforts continue at the CSE.

As seen from the discussions above,
there is still much work to be done in
order to support the unification of the
COCOMO models. These include the fol-
lowing:

at different layers of the system. Extreme
care needs to be taken when developing
models that cover activities that have
shared responsibilities with hardware,
software, and other players.

The identification of such activities is

2. Determine more precisely how tradi-
tional phase activities and Model
Based (System) Architecting and
Software Engineering/Rational Uni-
fied Process [1] phases map to cost-
model activities and how these phases

the first step in identifying possible over- 1.
laps between models. Further difficulties
arise when dealing with different organiza-
tions that use customized work break-
down structures. These, along with the
aforementioned challenges, will continue
to be addressed as the model unification

Develop a more complete description
of activities covered by each model.
These descriptions will allow us to
identify, minimize, or eliminate any
overlap between the models and iden-
tify software system-related activities
not covered by any of the models.

are integrated at the SoS, system, and
software levels. Work in this area has
already begun [5] but some unresolved
issues remain in the context of unified
models.

3. Refine counting rules/definitions for
model inputs and outputs and then

Figure 2: Early Unification Goal

L] L] L] L]
I Size Drivers I
SoS
I COTS
System
I Software I

I Cost Drivers as
appropriate at
each level
SoS, System, I
I COTS, and
Software
I Personnel
Process I

COSOSIMO/System

COSOSIMO/Software

COSYSMO

COCOMO I
COCOTS

- =1

I LSl
System
I:Effoft coTs I
Integration I
Software

24 CrossTALK The Journal of Defense Software Engincering

determine how they can be combined

into an efficient, user-friendly unified

model.

4. Determine typical distribution profiles
for effort across all of the activities/
phases in a unified environment.

The initial goal of this effort is to
develop a unified model that includes
COCOMO II, COSYSMO, COCOTS
and COSOSIMO as shown in Figure 2. As
we learn from this process, we will begin
to add other models from the COCOMO
suite.

April 2005

The current unification effort will help
establish a framework and define the con-
text for the evolution of the unified model
into something that can provide a com-
prehensive estimate for the development
of software systems and software-inten-
sive SoS. We will continue to collaborate
with CSE affiliates with the goal of evolv-
ing the COCOMO suite so that it can help
users make better decisions about the
development of software-intensive sys-
tems. ¢

References

1. Boehm, B. Software FEngineering
Economics. Prentice Hall, 1981.

Boehm, B., et al. Software Cost
Estimation with COCOMO II.
Prentice Hall, 2000.

Annual Research Review, Corporate
Affiliate Survey. University of
Southern California Center for
Software Engineering, 16 Mar. 2004.
University of Southern California
Center for Software Engineering.
“Unification Workshop Minutes.”
19th Forum on COCOMO and
Software Cost Modeling, 26 Oct. 2004.
Boehm, B., A.W. Brown, V. Basili, and
R. Turner. “Spiral Acquisition of
Software-Intensive Systems of Sys-
tems.” CROSSTALK May 2004: 4-9.

About the Authors

Barry Boehm, Ph.D.,
is the TRW professor
of software engineer-
ing and director of the
Center for Software
Engineering at the
University of Southern California. He
was previously in technical and man-
agement positions at General
Dynamics, Rand Cotp., TRW, and the
Defense Advanced Research Projects
Agency, where he managed the acquisi-
tion of more than $1 billion worth of
advanced information technology sys-
tems. Boehm originated the spiral
model, the Constructive Cost Model,
and the stakeholder win-win approach
to software management and require-
ments negotiation.

E-mail: boehm@usc.edu

Jo Ann Lane is current-
ly a doctorate student at
the University of South-
ern California in systems
architecting. Prior to
this, she was a key tech-
nical member of Science Applications
International Corporation’s Software
and Systems Integration Group. She has
over 28 years of experience in the areas
of software project management, soft-
wate process definition and implemen-
tation, and metrics collection and analy-
sis. Lane has a Master of Science degree
in computer science from San Diego
State University.

E-mail: jolane@usc.edu

April 2005

Ricardo Valerdi is a
member of the
Technical Staff at the
Aerospace Corporation.
Previously, he worked
as a systems engineer at
Motorola and General Instruments. He
is a doctorate candidate at the
University of Southern California
(USC) in the systems architecting pro-
gram and is a research assistant at USC’s

Center for Software Engineering.
Valerdi has a Bachelor of Science in
electrical engineering from the

University of San Diego and a Master
of Science in systems architecting from
USC.

E-mail: rvalerdi@sunset.usc.edu

A. Winsor Brown is a
senior research scientist
and assistant director of
the University of
Southern California
Center for Software
Engineering. As an engineer with
decades of experience in large and small
commercial and government contract-
ing companies, he started his career in
computer hardware design but shifted
to software within months and remains
there today. He has a Bachelor of
Science in engineering science from
Rensselaer Polytechnic Institute and a
Master of Science in electrical engineet-
ing from California Institute of
Technology.

E-mail: awbrown@usc.edu

COCOMO Suite Methodology and Evolution

Get Your Free Subscription
Fill out and send us this form.

OO-ALC/MASE
6022 FIR AVE
BLDG 1238
HiLL AFB, UT 84056-5820
FAX: (801) 777-8069 DSN: 777-8069
PHONE: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af. mil

NAME:

RANK/ GRADE:

PosITION/TITLE:

ORGANIZATION:

ADDRESS:

BAse/CITY:

STATE: ZiP:

PHONE:()

Fax:()

E-MAIL:

CHEcK Box(Es) To REQUEST BACK ISSUES:
Nov2003 [] DEv. oF REAL-TIME SW
DeEc2003 [| MANAGEMENT Basics
JAN2004 []| INFO FROM SR. LEADERSHIP

MAR2004 [] SW PROCESS IMPROVEMENT
APR2004 []| AcQuisITION
MAY2004 [] TecH.: PROTECTING AMER.
JUN2004 []| AssESSMENT AND CERT.
JuLy2004 []| Topr 5 PRrOJECTS
Auc2004 [| SysTEMs APPROACH
SEPT2004 [| SoFTwARE EDGE
0OcT2004 [| PROJECT MANAGEMENT
Nov2004 [] SoFTwARE TOOLBOX
Dec2004 [] REeUsE
JAN2005 [| OPEN SourRCE SW

(]

FEB2005 Risk MANAGEMENT
MAR2005 [| TeAM SoFTWARE PROCESS

To REQUEST BACK ISSUES ON ToPiCs NOT
LISTED ABOVE, PLEASE CONTACT KAREN
RASMUSSEN AT <STSC.CUSTOMERSERVICE@
HILL.AF.MIL>.

www.stsc.hillaf.mil 25

